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Abstract

Based on a loss network model, we present an adaptive source routing scheme for a large, hierarchically organized

network. To represent the ``available'' capacity of a peer group (subnetwork), we compute the average implied cost to

go through or into the peer group. Such implied costs re¯ect the congestion in the peer group as well as the interde-

pendencies among tra�c streams in the network. We prove that both a synchronous and asynchronous distributed

computation of the implied costs will converge to a unique solution under a light load condition. Furthermore, we

present a more aggressive averaging mechanism that, with su�cient damping, will converge to a unique solution under

any tra�c conditions. One of the key features of this paper is an attempt to quantify routing ``errors'' due to inac-

curacies caused by aggregation. In fact, our experimental results show that these approximations are reasonably ac-

curate and our scheme is able to appropriately route high level ¯ows while signi®cantly reducing complexity. In

addition, we show how on-line measurements and multiservice extensions can be incorporated into the routing algo-

rithm. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In order to provide guaranteed quality of ser-
vice (QoS), communication systems are increas-
ingly drawing on ``connection-oriented'' techniques.
ATM networks are connection-oriented by design,
and QoS extensions to the Internet, such as RSVP
[6,19,50], make such networks akin to connection-
oriented technologies. Indeed, the underlying idea

of RSVP is to reserve resources for packet ¯ows,
but to do it in a ¯exible manner using ``soft state''
which allows ¯ows to be rerouted (or ``connec-
tions'' repacked [23]). Similar comments apply to
an IP over ATM switching environment, where IP
¯ows are mapped to ATM virtual circuits. In light
of the above trend and the push toward global
communication, our focus in this work is on how
to make routing e�ective and manageable in a
large-scale, connection-oriented network by using
network aggregation. We shall ®rst discuss the
importance of using implied costs, introduce hi-
erarchical source routing, explain the basics of our
routing algorithm, and give an example of the
complexity reduction that it can achieve.
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1.1. Network vs. user optimal routing

In a large-scale network, there are typically
multiple paths connecting a given source/destina-
tion pair, and it is the job of the routing algorithm
to split the demand among the available paths.
The routing algorithm which we introduce in this
paper ®ts into the ATM private network-network
interface (PNNI) framework [2], or it could replace
the border gateway protocol (BGP) [19] in the
Internet and split ¯ows in ``IP/RSVP'' routing.
Central to our algorithm is the implied cost [22] for
a connection along a given path which measures
the opportunity cost or expected loss of revenue
resulting from accepting a connection. Using im-
plied costs takes into account the possibility of
``knock-on'' e�ects (due to blocking and subse-
quent alternate routing) [22] and is geared towards
achieving a network optimal routing algorithm.

By routing packets or connections individually
so as to minimize their own delays, one may obtain
an equilibrium which is user optimal. However,
since such equilibria are derived from a greedy,
somewhat myopic user perspective of the network,
they do not usually achieve the minimum overall
network delays that one would associate with the
system optimum from the network provider's
point of view. This has been shown to occur in
transportation, queueing, and loss networks, as
well as other types of networks [3,7,24]. To achieve
network optimal routing, one needs to incorporate
implied costs into the routing algorithm. The basic
idea is that the implied costs correspond to the
Lagrange multipliers associated with a network
revenue optimization problem. These costs are in
turn used to compute the sensitivity of the network
revenue to placing additional loads and/or shifting
loads on candidate routes in the network, and in-
terdependencies among tra�c streams are taken
into account.

1.2. Hierarchical source routing: motivation and
example

Source routing, where the source speci®es the
entire path for a connection, is an attractive
routing method for connection-oriented networks
because a path that provides acceptable QoS and

increases network revenue can be chosen up front.
By contrast, with hop-by-hop routing, each switch
needs to evaluate the QoS across the entire net-
work to determine the next hop [1]. Source routing
has the additional advantage that there is no need
to run a standardized routing algorithm to avoid
loops and policy issues such as provider selection
are easily accommodated. For source routing to be
e�ective, we must maintain at least a rough global
view of the network state at each host. Propagat-
ing information for each link throughout the net-
work quickly becomes unmanageable as the size of
the network increases, so a hierarchical structure,
such as that proposed in the ATM PNNI speci®-
cation [2], is needed. Groups of switches are or-
ganized into peer groups (also referred to as
clouds), and peer group leaders are chosen to co-
ordinate the representation of each group's state.
These collections of switches then form peer
groups at the next level of the hierarchy and so on.
Nodes keep detailed information for elements
within their peer group. For other peer groups,
they only have an approximate view of the current
state, and this view can become coarser as the
``distance'' to remote areas of the network in-
creases. We refer to the formation of peer groups
as network aggregation. Besides reducing the
amount of exchanged information, a hierarchical
structure permits the use of di�erent routing
schemes at di�erent levels of the hierarchy.

By combining a hierarchical network with
(loose 2) source routing, we have a form of routing
referred to as hierarchical source routing. As an
illustration, Fig. 1 shows a fragment of a larger
network (Network 0) in which Peer Group 2
contains Nodes 1, 2, and 3. 3 These nodes contain
3, 5, and 4 switches, respectively. To specify, for
example, the source at Switch 2 of Node 1 of Peer
Group 2 in Network 0, we use the 4-tuple 0.2.1.2.
The example in Fig. 1 shows a source at 0.2.1.2
and destination at 0.2.3.4. The source 0.2.1.2 has

2 In loose source routing, only the high-level path is speci®ed

by the source. The detailed path through a remote peer group is

determined by a border switch of that peer group.
3 These nodes are peer groups in their own right, but we use

the term ``node'' here to avoid confusion with the peer groups

at the next level of the hierarchy.
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speci®c information about its peer switches 0.2.1.1
and 0.2.1.3, but only aggregated information
about nodes 0.2.2 and 0.2.3. The result of per-
forming source routing is a tentative hierarchical
path to reach the destination, e.g., 0:2:1:2!
0:2:1:1! 0:2:2! 0:2:3 which speci®es the exact
path locally �0:2:1:2! 0:2:1:1� then the sequence
of remote nodes to reach the destination
�! 0:2:2! 0:2:3�. Upon initiating the connection
request, the speci®ed path is ¯eshed out, and, if
successful, a (virtual circuit) connection satisfying
prespeci®ed end-to-end QoS requirements is set
up. In this case, the border switches 0.2.2.4 and
0.2.3.2 in Nodes 2 and 3, respectively, are re-
sponsible for determining the detailed path to
follow within their respective group. Furthermore,
each switch will have a local connection admission
control (CAC) algorithm which it uses to deter-
mine whether new connection requests can in fact
be admitted without degraded performance. If the
attempt fails, crankback occurs, and new attempts
are made at routing the request. 4

1.3. Explicit vs. implicit representations of available
capacity

To do routing in this hierarchical framework,
we must decide how to represent the ``available''

capacity of a peer group, either explicitly or im-
plicitly. The explicit representation takes the
physical topology and state of a peer group and
represents it with a logical topology plus a metric
denoting available capacity that is associated with
each logical link. There may also be other metrics
such as the average delay associated with logical
links.

Typically, the ®rst step in forming the explicit
representation is to ®nd the maximum available
bandwidth path between each pair of border
nodes, i.e., nodes directly connected to a link that
goes outside the peer group. If we then create a
logical link between each pair of border nodes and
assign it this bandwidth parameter, we have taken
the full-mesh approach [31]. If we collapse the en-
tire peer group into a single point and advertise
only one parameter value (usually the ``worst
case'' parameter), we have taken the symmetric-
point approach [31]. Most proposed solutions lie
somewhere between these two extremes.

In the ATM PNNI speci®cation [2], the baseline
representation is a star in which each spoke has the
same parameter value associated with it. More
complex representations are permitted in which
exceptions have a di�erent associated parameter
value than the default. These exceptions can be a
spoke of the star or an additional logical link that
connects a pair of border nodes. Another alter-
native is to start with the full-mesh approach and
encode the mesh in a maximum weight spanning
tree [31]. External nodes can recover the full-mesh
representation from the spanning tree if they de-
sire. Whereas the symmetric star topology ap-
proximates the ``capacity region'' of the peer
group by a hyper-cube region, the spanning tree
approximates it with a hyper-rectangle. A third
approach is to approximate the capacity region
with a hyperplane [49]. When coupled with pre-
diction of o�ered loads, the hyperplane approach
has the potential to provide a more accurate pic-
ture of the available capacity than the star or the
spanning tree.

None of the explicit representations, however,
are without problems. For example, the maximum
available bandwidth paths between di�erent pairs
of border nodes may overlap, causing the adver-
tised capacity to be too optimistic. Another

Fig. 1. Illustration of hierarchical addressing and source rout-

ing.

4 Our model will ignore crankback.
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questionable area is scalability to larger networks
with more levels of hierarchy. A more important
problem is how the representation couples with
routing. Can we really devise an accurate repre-
sentation that is independent of the choice of
routing algorithm? None of the explicit represen-
tations address the e�ect that routing calls along
particular hierarchical paths would have on the
congestion level both within the peer group and in
other parts of the network due to interdependen-
cies among tra�c streams from various geographic
locations. For this reason, we introduce an implicit
representation based on the average implied cost
to go through or into a peer group that directly
addresses this issue and is an integral part of the
adaptive hierarchical source routing algorithm
that we propose.

1.4. QoS routing based on implied costs

The average implied cost to traverse or enter a
peer group re¯ects the congestion within the peer
group as well as the interdependencies among
tra�c streams across the entire network. Inde-
pendent of their use in a routing algorithm, they
may be useful to network operators for the pur-
pose of accurately assessing current congestion
levels as well as providing information valuable for
determining the best location for future capacity
upgrades and how much they should be willing to
pay for them. A rough motivation behind using
the average is that, in a large network with diverse
routing, a connection coming into a peer group
can be thought of as taking a random path
through that group, and hence the expected cost
that a call would incur would simply be the aver-
age over all transit routes through that group. We
will develop two closely related approximations:
one in which the computed average implied costs
are not used for the local portion of a route, and a
more aggressive approximation in which the
average implied cost is used locally as well as
remotely for transit routes traversing more than
one peer group. In this second approach, we can
conceptualize a route transiting through a peer
group as consuming a fraction of bandwidth on
each link in that peer group. The fraction used for
a particular link would depend on the proportion

of actual transit tra�c in that peer group which
passes through that link.

In order for our scheme to succeed, we need a
hierarchical computation of the implied costs and
a complementary routing algorithm to select
among various hierarchical paths. The path se-
lection will be done through adaptive (sometimes
called quasi-static) routing, i.e., slowly varying
how demand is split between transit routes that
traverse more than one peer group, with the goal
of maximizing the rate of revenue generated by the
network. After eliminating routes which do not
satisfy the QoS constraints, e.g., end-to-end delay, 5

the demand for transit routes connecting a given
source/destination pair can be split based on the
revenue sensitivities which are calculated using the
implied costs. Within peer groups, we feel that
dynamic routing should be used since local routing
information would be available.

By using an adaptive algorithm based on im-
plied costs, we take the point of view that ®rst it is
of essence to design an algorithm that does the
right thing on the ``average'', or say in terms of
orienting the high-level ¯ows in the system toward
a desirable steady state. In order to make the
routing scheme robust to ¯uctuations, appropriate
actions would need to be taken upon blocking/
crankback to ensure good, equitable performance
in scenarios with temporary heavy loads.

1.5. Using hierarchy to reduce complexity

We now give an example of the complexity re-
duction achievable with our algorithm. Consider a
network consisting solely of Peer Group 2 in
Fig. 1. As will be explained in Section 3, the implied
costs are computed via a distributed, iterative
computation. At each iteration, the links must
exchange their current values. Making the as-
sumption that Nodes 1, 2, and 3 are connected
locally using a broadcast medium, this would re-
quire 81 messages per iteration if we did not em-
ploy averaging. With our algorithm for computing

5 In our model, e�ective bandwidth [9,25] allocation is used to

control queueing delays which translates to a limit on hop

counts plus propagation delay in order to satisfy a given delay

bound.
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the implied costs, only 41 messages per iteration
would be needed, a savings of 49%. The memory
savings would be commensurate with these num-
bers, and the computational complexity of the two
algorithms is roughly the same. This reduction is
signi®cant because, in a large-scale network, the
overhead associated with information updates in
an algorithm such as PNNI can easily overload the
network elements [43].

1.6. Related work

Hierarchical routing has been widely studied
and used in both telephone and data networks
[8,12,15,20,27,46]. Generally, only simple routing
metrics such as hop count have been used to select
appropriate paths. With the current trend toward
integrated broadband networks, interest in QoS-
sensitive routing algorithms has been increasing
[33,41,48]. In addition, the desire for large-scale
networking has made a combination of the above,
hierarchical QoS-sensitive routing algorithms, an
important area of study [2,16,17,34,40]. For the
speci®c case of routing in ATM networks, which
supports QoS and makes use of hierarchy and is
consequently quite complex, a good overview can
be found in [1]. As an aside, we note that QoS
routing problems such as the constrained shortest
path problem are typically NP-complete [13,48].

As part of the research on hierarchical QoS-
sensitive routing, the explicit representation of
available subnetwork capacity has been studied in
detail [2,17,31,32,49]. However, our implicit rep-
resentation based on implied costs is new. Here we
have extended the work of Kelly and others on the
computation of implied costs and their use in
adaptive routing schemes in single-service and
multiservice ¯at networks [11,22,35,37]. Further
information on the accuracy and use of implied
costs with dynamic routing can be found in [14,26].
Our proposed routing algorithm lies in the class of
network optimal algorithms as it attempts to
maximize the rate of revenue for the network in-
stead of greedily trying to individually maximize
each user's bene®t. Network vs. user optimization
and the possible e�ects on stability in QoS-sensi-
tive routing is an issue worthy of further study,
especially in light of recent measurements indi-

cating instabilities in current Internet routing [30].
An earlier version of the material in this paper can
be found in [39].

1.7. Paper organization

The rest of this paper is organized as follows.
Section 2 explains our model and notation. The
theoretical basis of our adaptive routing scheme
and its relation to Kelly's work [22] is given in
Section 3. An alternative approximation of the
implied costs that works under any tra�c condi-
tions is developed in Section 4. Section 5 presents
some computational results which attempt to
quantify routing ``errors'' due to inaccuracies
caused by aggregation. In Section 6, we discuss on-
line measurements of some necessary parameters,
and Section 7 brie¯y outlines extensions to a
multiservice environment. Finally, Section 8 con-
cludes with a summary.

2. Model and notation

Our model is that of a loss network serving a
single type of tra�c, 6 i.e., all calls require unit
bandwidth, call holding times are independent (of
all earlier arrival times and holding times) and
identically distributed with unit mean, and blocked
calls are lost. The unit bandwidth requirement per
call can be considered to be an e�ective bandwidth
[9,25] which captures the tra�c characteristics.
The capacity of each link j 2 J is Cj units, and
there are a total of J links in the network. Each
link j is an element of a single node n�j� 2N,
where an aggregated node n is de®ned as a col-
lection of links that form a peer group or that
connect two peer groups. 7 We de®ne Ejn to be an
indicator function for the event that link j is an
element of node n, and Pjk is an indicator function
for the event that link j is a peer of link k (i.e., in

6 Extensions to multiservice networks will be presented in

Section 7.
7 There may be multiple links connecting the border switches

of two peer groups. This set of one or more interconnecting

links is considered to be a separate aggregated node in our

model.
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the same node). A route is considered to be a
collection of links in J; route r 2 R uses Ajr cir-
cuits on link j 2 J, where Ajr 2 f0; 1g. 8 A transit
route is de®ned as a route that contains links in
more than one node, and Tnr is an indicator
function for the event that transit route r passes
through node n. A call requesting route r is ac-
cepted if there are at least Ajr circuits available on
every link j. If accepted, the call simultaneously
holds Ajr circuits from link j for the holding time of
the call. Otherwise, the call is blocked and lost.
Calls requesting route r arrive as an independent
Poisson process of rate mr. Where appropriate, all
values referred to in this paper are steady-state
quantities.

For simplicity, we only consider a network with
one level of aggregation like that shown in Fig. 2.
This network has three peer groups, consisting of
3, 5, and 4 switches, respectively. The logical view
of the network from a given peer group's per-
spective consists of complete information for all
links within the peer group but only aggregated
information for links between peer groups and in
other peer groups. The other peer groups concep-
tually have logical links which connect each pair of
border switches and connect each border switch to
each internal destination. These logical links have
an associated implied cost, i.e., marginal cost of

using this logical resource, which is approximated
from the real link implied costs. Currently, we
calculate an average implied cost for any transit
route that passes through or into a node, i.e., all of
the logical links in a node have the same implied
cost, and this value is then advertised to other peer
groups. Fig. 3 shows the logical view of the
example network from the perspective of peer
group 1.

3. Approximations to revenue sensitivity

To calculate the revenue sensitivities, we must
®rst ®nd the blocking probability for each route,
an important performance measure in its own
right. Steady-state blocking probabilities can be
obtained through the invariant distribution of the
number of calls in progress on each route. How-
ever, the normalization constant for this distribu-
tion can be di�cult to compute, especially for
large networks. Therefore, the blocking probabil-
ities are usually estimated using the Erlang ®xed
point approximation [15,23].

Let B � �Bj; j 2 J� be the solution to the
equations

Bj � E�qj;Cj�; j 2 J; �1�

Fig. 2. Example network with a single level of aggregation. Fig. 3. Logical view of the network from the perspective of peer

group 1. The set of links connecting two peer groups is also

considered to be an aggregated node in our model.

8 In general, these routes might include multicast routes.
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where

qj �
X
r2R

Ajrmr

Y
k2rÿfjg

�1ÿ Bk� �2�

and the function E is the Erlang B formula [4]

E�qj;Cj� �
qCj

j

Cj!

XCj

n�0

qn
j

n!

" #ÿ1

: �3�

The vector B is called the Erlang ®xed point; its
existence follows from the Brouwer ®xed point
theorem and uniqueness was proved in [21]. Using
B, an approximation for the blocking probability
on route r, under the assumption that blocking is
independent from link to link, is

Lr � 1ÿ
Y
k2r

�1ÿ Bk�: �4�

Alternatively, instead of using the Erlang ®xed
point to approximate the blocking probabilities, it
may be more accurate and e�cient to measure the
relevant quantities. Speci®cally, Lr, kr (the
throughput achieved on route r), and hj �P

r2R Ajrkr (the total throughput through link j)
can be obtained based on moving-average esti-
mates. This will in turn allow us to compute the
associated implied costs and hence the approxi-
mate revenue sensitivities. We will discuss the
subject of on-line measurements more fully in
Section 6.

Assuming that a call accepted on route r gen-
erates an expected revenue wr, the rate of revenue
for the network is

W �m; C� �
X
r2R

wrkr: �5�

Starting from the Erlang ®xed point approxima-
tion and by extending the de®nition of the Erlang
B formula (3) to non-integral values of Cj via lin-
ear interpolation, 9 the sensitivity of the rate of
revenue with respect to the o�ered loads has been
derived by Kelly [22] and is given by

o
omr

W �m; C� � �1ÿ Lr�sr; �6�

where

sr � wr ÿ
X
k2J

Akrck �7�

is the surplus value of an additional connection on
route r, and the link implied costs are the (unique)
solution to the equations

cj � gj�1ÿ Bj�ÿ1
X
r2R

Ajrkr�sr � cj�; j 2 J; �8�

where gj � E�qj;Cj ÿ 1� ÿ E�qj;Cj�. Bj, qj, and Lr

are obtained from the Erlang ®xed point approx-
imation, and kr � mr�1ÿ Lr�.

In a ¯at network, the o�ered load for a given
source/destination pair should be split among the
available routes based on the revenue sensitivities
in (6). An additional call o�ered to route r will be
accepted with probability 1ÿ Lr. If accepted, it
will generate revenue wr, but at a cost of cj for each
j 2 r. The implied costs c quantify the potential
knock-on e�ects or expected loss in revenue due to
accepting a call. The goal of the routing algorithm
is to maximize the rate of network revenue W �m; C�
by adaptively adjusting the splitting for each
source/destination pair over time in response to
changing tra�c conditions. The splitting for a
source/destination pair should favor routes for
which �1ÿ Lr�sr has a positive value since in-
creasing the o�ered tra�c on these routes will
increase the rate of revenue. Routes for which
�1ÿ Lr�sr is negative should be avoided, with all
adjustments of the splitting made gradually to
guard against sudden congestion. We note that, in
general, W �m; C� is not concave, so there may exist
nonoptimal local maxima. However, Kelly has
shown that it is asymptotically linear when m and C
are increased proportionally [22]. Furthermore,
even though the routing algorithm could poten-
tially reach a nonoptimal local maximum of the
revenue function, the stochastic ¯uctuations in the
o�ered tra�c may allow it to escape that particular
region.

To perform aggregation by peer group, we ®rst
de®ne the quantity �cn as the weighted average of
the implied costs associated with pieces of transit
routes that pass through or enter node n (or,
equivalently, over the links in n visited by such
routes) where, in the following, cn

r �
P

j2J AjrEjncj:

9 At integer values of Cj, de®ne the derivative of E�qj;Cj� with

respect to Cj to be the left derivative.
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�cn �
P

r2R Tnrkrcn
rP

r2R Tnrkr

�
P

j2J Ejn�
P

r2R TnrAjrkr�cjP
r2R Tnrkr

: �9�

This averaging is illustrated in Fig. 4. We rede®ne
the surplus value for a route as a function of the
local link implied costs and the remote nodal im-
plied costs, from the perspective of link j 2 r (see
Fig. 5)

sr;j � wr ÿ
X
k2J

AkrPkjck ÿ
X

n 6�n�j�
Tnr�cn: �10�

The link implied costs are now calculated as

cj � gj�1ÿ Bj�ÿ1
X
r2R

Ajrkr�sr;j � cj�; j 2 J:

�11�

In the sequel, we will address the following issues:
the existence of a unique solution to these equa-
tions, convergence to that solution, and the accu-
racy relative to the implied costs (8) associated
with a ¯at network.

Eq. (11) can be solved iteratively in a distrib-
uted fashion via successive substitution. If we de-
®ne a linear mapping f : RJ ! RJ by f �
�f1; f2; . . . ; fJ �,
fj�x� � gj�1ÿ Bj�ÿ1

X
r2R

Ajrkr

� wr

 
ÿ
X
k 6�j

AkrPkjxk ÿ
X

n6�n�j�
Tnr�xn

!
; �12�

then successive substitution corresponds to calcu-
lating the sequence f i�x�; i � 1; 2; . . ., where f i�x�
is the result of iterating the linear mapping i times.

Let k � kM denote the following norm on RJ :

kxkM � max
j;r

Ajr

X
k 6�j

AkrPkjjxkj
 (

�
X

n6�n�j�
Tnrjxjn

!)
;

�13�
where

jxjn �
P

j2J Ejn�
P

r2R TnrAjrkr�jxjjP
r2R Tnrkr

:

For any positive vector a, we de®ne the weighted
maximum norm on RJ by kxka1 � maxj jxj=ajj,
where we suppress the index a if aj � 1 for all j.
Also, let d � �d1; d2; . . . ; dJ �, where dj � gjqj de-
notes Erlang's improvement formula [22].

Fig. 4. Computation of �cn for an aggregated node n with two

transit routes.

Fig. 5. Implied costs for a route from the perspective of link j.
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Theorem 1. Suppose that kdkM < 1. Then the
mapping f : RJ ! RJ is a contraction mapping un-
der the norm k � kM , and the sequence f i�x�; i �
1; 2; . . ., converges to c0, the unique solution of (11),
for any x 2 RJ .

Proof. See Appendix A. �

The product gjqj increases to 1 as qj, the of-
fered load at link j, increases [22]. So kdkM < 1
can be referred to as a light load condition. If the
network has long routes and/or heavily loaded
links, this constraint may be violated, but at
moderate utilization levels, we expect that it will
hold. As an example, consider a loss network in
which all links have capacity C � 150 and the
reduced load at each link from thinned Poisson
streams is q � 100. Furthermore, for simplicity,
assume that each transit route across a node has
the same length. Then d � 3:3� 10ÿ5 for each
link, and the condition kdkM < 1 requires the
maximum route length to be at most 30,717 links.
The blocking probability for a route of maximum
length is approximately 2% (under the link inde-
pendence assumption). If q is increased to 120 for
each link, the maximum route length is 33 links
with a blocking probability of approximately 3%
along such a route. At q � 140, the maximum
route length is 3 links with a blocking probability
of approximately 8%. For this scenario (equal
link capacity C � 150 and equal loads at each
link), link utilizations up to about 80% are cer-
tainly feasible under our ``light load'' condition.
As the capacities of the links increase (relative to
bandwidth requests), even higher utilizations are
possible before the maximum route length
becomes too small and/or blocking becomes
prohibitive.

The convergence proved in Theorem 1 assumes
iterates are computed synchronously. In a large-
scale network, synchronous computation may be
infeasible, so we will show that our light load
condition is su�cient for convergence of an
asynchronous computation in the following sense
[5]:

Assumption 1 (Total asynchronism). Each link
performs updates in®nitely often, and given any

time t1, there exists a time t2 > t1 such that for all
t P t2, no component values (link and average
implied costs) used in updates occurring at time t
were computed before t1.

Note that, under this assumption, old infor-
mation is eventually purged from the computa-
tion, but the amount of time by which the
variables are outdated can become unbounded as t
increases.

Theorem 2. Suppose that kdkM < 1 and d > 0.
Then, under Assumption 1 (total asynchronism), the
sequence f i�x�; i � 1; 2; . . ., converges to c0, the
unique solution of (11), for any x 2 RJ .

Proof. See Appendix B. �

With the additional restriction of bounded
communication delays, the convergence rate of an
asynchronous iteration satisfying the conditions of
Theorem 2 is geometric and can actually be faster
than the corresponding synchronous version
which has to wait for all values from the previous
iteration to be distributed before performing the
next update. See [5, pp. 441±443] for the details of
a situation analogous to ours which has ``fast''
local communication (within peer groups) and
``slower'' remote communication (between peer
groups) and where the asynchronous convergence
rate is faster if there is a ``strong coupling'' among
the local variables (i.e., the local implied costs), a
condition which should typically hold true in a
hierarchical network if the amount of local tra�c
dominates the amount of remote tra�c in each
peer group.

Theorem 3. Suppose that kdkM < 1 and denote c
and c0 as the solutions to (8) and (11), respectively.
Define D � maxn;r fTnr

P
m6�n Tmrjcm

r ÿ �cmjg where
cm

r �
P

j2J AjrEjmcj and �cm is defined by (9). Then
we have

ksÿ s0k16
Dkd� 1k1
1ÿ kdkM

; �14�

where by ksÿ s0k1 we mean maxj;r:j2r jsr ÿ s0r;jj.

Proof. See Appendix C. �
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The error between our modi®ed implied costs
(11) and the implied costs (8) associated with a ¯at
network will be minimized under light loads
(kdkM � 1) and if the di�erence between transit
route costs and the average for each node is small
(D close to 0). We use the maximum norm of sÿ s0

as a comparison because it directly a�ects the dif-
ference in the revenue sensitivity in (6) using the ¯at
and hierarchical frameworks. The measured value
of Lr used in (6) may also be di�erent from that in a
¯at network because it is potentially averaged over
several routes with the same hierarchical path from
a given node's point of view. When making adap-
tive routing decisions, we are really only concerned
with the relative values of o

omr
W �m; C� among routes

sharing a common source/destination pair. It is
unclear in what situations our approximation
might a�ect this ordering.

To summarize, our routing algorithm works as
follows:
1. The blocking probabilities and carried loads are

®rst estimated using the Erlang ®xed point ap-
proximation (or on-line measurements as dis-
cussed in Section 6).

2. The link implied costs (11) and average implied
costs (9) are computed iteratively by asynchro-
nously exchanging values and recomputing un-
til the costs converge.

3. The implied costs are used to compute the rev-
enue sensitivities �1ÿ Lr�sr;j for candidate hier-
archical paths. (Routes not able to provide the
desired QoS, e.g., paths with excessive propa-
gation delays, may have already been eliminat-
ed.)

4. The splitting probabilities for the hierarchical
paths connecting a source to a given destina-
tion peer group are adjusted based on the rev-
enue sensitivities. The higher the sensitivity,
the more tra�c should be o�ered to that
path, but all adjustments should be made
gradually.

5. The process is repeated periodically as condi-
tions warrant.

Underneath this adaptive routing mechanism, a
dynamic routing algorithm (which we have not
speci®ed) is run within each peer group to
route transit and local tra�c within that peer
group.

4. An alternative approximation

In this section, we consider a more aggressive
averaging mechanism. In the previous approach,
we used exact information for resources within a
peer group and aggregated metrics to represent its
remote peers. By contrast, herein we also perform
local averaging among routes transiting through
or into a local peer group. We will show that this
alternative approximation has a similar structure
to the previous case, although it is a cruder ap-
proximation for the implied costs associated with
a ¯at network. The key advantage of this ap-
proach is that, subject to su�cient damping, one
can show convergence to new approximate im-
plied costs under any tra�c conditions and route
topology. In fact, the required damping within a
peer group depends only on local information,
the number of links within the peer group, and
aggregated global information, the total number
of peer groups. Thus, the damping factor within a
peer group only requires information that is
consistent with its hierarchically aggregated view
of the network, and the nonlocal knowledge re-
quired, namely the total number of peer groups,
is not detrimental to the decentralized nature of
the computation.

De®ne the matrix �A with elements �Ajr 2 �0; 1�
such that

�Ajr �
P

q2R Tn�j�qAjqkqP
q2R Tn�j�qkq

if Tn�j�r � 1;

Ajr if Tn�j�r � 0:

8<: �15�

Local routes remain unchanged: they take a single
circuit on each link that they traverse. However,
transit routes can be thought of as consuming a
fraction of a circuit on every link in each node that
they traverse. This fraction is equal to the fraction
�Ajr of transit tra�c in node n�j� which passes

through that link. Note that the o�ered load qj at
link j remains the same whether it is computed
based on the ¯at network's routing matrix A or the
aggregated routing matrix �A. Indeed, for ®xed kr,
we have qj � �1ÿ Bj�ÿ1P

r2R Ajrkr � �1ÿ Bj�ÿ1P
r2R �Ajrkr.
By substituting �A for A in (8), we have the fol-

lowing implied cost equations:

388 M. Montgomery, G. de Veciana / Computer Networks 34 (2000) 379±397



cj � gj�1ÿ Bj�ÿ1
X
r2R

�Ajrkr wr

�
ÿ
X
k 6�j

�Akrck

�
;

j 2 J: �16�

We can rewrite these equations in various ways to
bring out the connections with both our ®rst ag-
gregation method (9) and the original implied cost
equation (8) for a ¯at network. First, we note that
for a given link j and route r such that Tn�j�r � 1, we
have

P
k2J �AkrPkjck � �cn�j�, which illuminates the

role of �Ajr in performing additional averaging of
implied costs at the local level; compare this with
(9). Second, we can rewrite (16) as

cj � gj�1ÿ Bj�ÿ1
X
r2R

�Ajrkr

� wr

 
ÿ
X
k 6�j

�AkrPkjck ÿ
X

n 6�n�j�
Tnr�cn

!
�17�

� gj�1ÿ Bj�ÿ1
X
r2R

"
�1ÿ Tn�j�r�Ajrkr

� wr ÿ
X
k2J

Akrck � cj

 !
� Tn�j�r �Ajrkr

� wr ÿ
X
n2N

Tnr�cn � �Ajrcj

 !#
: �18�

By comparing (17) with (11), we note that our two
approximations di�er only in the use of the �A
matrix locally instead of A. In (18), we see that the
equation for cj is a combination of the original Eq.
(8) for routes not transiting through node n�j� and
an equation based on ``averaged'' surplus values
sr � wr ÿ

P
n2N Tnr�cn for routes transiting through

node n�j� with �Ajr replacing Ajr.
Based on the above, we de®ne a new linear

mapping ~f : RJ ! RJ by ~f � � ~f1; ~f2; . . . ; ~fJ�,
~fj�x� � gj�1ÿ Bj�ÿ1

X
r2R

�Ajrkr wr

�
ÿ
X
k 6�j

�Akrxk

�
;

�19�
where ~f i�x� is the result of iterating the linear
mapping i times. De®ne ~f�c� : RJ ! RJ to be a
damped version of the iteration ~f ��� for c �
diag�cj�j where cj 2 �0; 1� 8j 2 J:

~f�c��x� � �I ÿ c�x� c ~f �x�: �20�

If we de®ne a norm on RJ by

kxk ~M � max
j;r

1� �Ajr > 0�
X
k 6�j

�Akrjxkj
( )

; �21�

then Theorems 1 and 2 can be shown to hold for
~f �x� under the condition kdk ~M < 1. However, our
main interest here lies in proving convergence of
the damped iteration ~f�c��x� without requiring
kdk ~M to be less than one.

In the following, let Jn denote the number of
links in node n, and recall that N denotes the total
number of aggregated nodes in the network.

Theorem 4. Eqs. (16) have a unique solution ~c. If
cj6 �NJn�j��ÿ1 8j 2 J, then the sequence ~f i

�c��x�;
i � 1; 2; . . ., converges to ~c for any x 2 RJ .

Proof. The proof closely resembles the develop-
ment in [22, Section 4]. See [38, Section 4.5] for the
proof. �

The convergence proved in Theorem 4 is based
on synchronous iterations. Our conjecture is that
under a partially asynchronous model [5], i.e.,
there is a ®xed bound D on the amount of time by
which the information used at a link can become
outdated, the algorithm will converge if we use a
small enough stepsize c [38, Section 4.5].

5. Computational results

In this section, we explore the computation of
the implied costs at one point in time for a given
set of o�ered loads. We use the Erlang ®xed point
equations to obtain the route blocking probabili-
ties, and then input the results to the implied cost
calculations. Let c, c0, and ~c denote the solutions to
(8), (11) and (16), respectively. The surplus values s
and s0 are computed according to (7) and (10),
respectively. For our alternative approximation,
we compute ~sr � wr ÿ

P
k2J �Akr~ck. Because we use

the same route blocking probabilities L in com-
puting the revenue sensitivities for all three cases,
the expected and maximum relative surplus value
di�erences are equal to the expected and maximum
relative revenue sensitivity errors. The results dis-
cussed below are summarized in Tables 1 and 3.
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We start with the symmetric network shown in
Fig. 6 and assign a capacity of 20 to each link. We
de®ne a total of 45 routes with o�ered loads
ranging from 1:0 to 3:0 in such a way that the
o�ered loads at each link in the three peer groups
are the same and all transit routes use only one
link in the peer groups that they pass through.
Each accepted connection generates a revenue of
1:0. Under these conditions, the calculated implied
costs c and c0 are the same, and, as a result, the
revenue sensitivities are also the same. For each
link in the peer groups, cj � 0:015. For the links
connecting the peer groups, cj � 0:129. Compared
to our alternative approximation, the di�erences
are quite small: k�cÿ ~c�=ck1 � 0:7%, and
k�sÿ ~s�=sk1 � 0:04%.

Next, we take the symmetric case and increase
the load on the links in peer group 1 to near ca-
pacity by increasing the o�ered loads for local
routes in peer group 1 to three and a half times
their previous values. This causes the implied cost
calculations for c and c0 to di�er slightly, and, due
to the heavy loads in peer group 1, the implied
costs ~c are not as accurate: k�cÿ ~c�=ck1 � 9:0%,
and k�sÿ ~s�=sk1 � 97:5%. (Despite the latter
result, we note that E��sÿ ~s�=s� �Pr2R �mr

�srÿ~sr�=sr�=
P

r2R mr is only 15:0%.) 10 To demon-
strate the change in revenue sensitivities from the
symmetric case, consider the two alternative routes
consisting of the following sets of links:

r1�f2;9;3g and r2�f10;6;11;5g. In the symmet-
ric case, the revenue sensitivities for r1 and r2 are
0:823 and 0:684, respectively. In the present over-
loaded case, the revenue sensitivities change to
approximately 0:416 and 0:772, respectively. 11

The longer route is now favored because it avoids
passing through the overloaded peer group. We
note that, using our ®rst hierarchical approxima-
tion, the revenue sensitivity may vary along a
particular route depending on which link is mak-
ing the calculation (due to the sr;j term). To be
exact, all links of a route in a given peer group will
compute the same sensitivity, but links of the route

Table 1

Computational results for the four experiments

Revenue sensitivity error:

E��� = k � k1
oW =om1 oW =om2 Implied cost error:

E��� = k � k1
Lmax�%� kdkM Iterations

�sÿ s0�=s �sÿ ~s�=s �cÿ c0�=c �cÿ ~c�=c

Symmetric

load

0.0%/0.0% 0.01%/0.04% 0.823 0.684 0.0%/0.0% 0.5%/0.7% 2.1 0.297 5

Local

overload

0.2%/1.5% 15.0%/97.5% 0.416 0.772 0.1%/0.3% 5.7%/9.0% 25 0.764 10±13

Transit

overload

0.9%/5.0% 1.0%/4.4% 0.335 0.686 0.4%/1.1% 6.3%/18.1% 16 0.780 8±9

Asymmetric

net

2.4%/15.5% 2.2%/15.5% ± ± 0.7%/2.1% 1.9%/6.2% 3.8 0.327 6±7

Fig. 6. Symmetric network with a single level of aggregation.

10 Similarly, we de®ne E��cÿ ~c�=c� �Pj2J�qj�cj ÿ ~cj�=cj�=P
j2J qj.

11 The revenue sensitivity values presented in this section are

computed using the surplus values s. Using s0 or ~s results in

slightly di�erent values but the same relative ordering.
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in a di�erent peer group may compute a di�erent
value. For our current example, the revenue sen-
sitivities vary only slightly along routes, on the
order of 0:004 in the worst case.

As another example of an overload scenario, we
start with the symmetric case and increase the
loads on transit routes between peer groups 1 and
2 by one and a half times, causing link 9 to be near
capacity. For this case, the di�erences between the
®rst two approximations are greater than in the
previous overload scenario, but the surplus values
~s fare much better. This is due to the fact that the
overloaded node consists of only a single link,
mitigating the errors due to local averaging of
transit route costs. The revenue sensitivities for r1

and r2 are approximately 0:335 and 0:686, re-
spectively, which would cause the routing algo-
rithm to send more tra�c around the overload as
desired. Compared to the previous case, there is
greater variation in the revenue sensitivities along
each route using s0, on the order of 0:013 in the
worst case.

For a fourth experiment with a more varied
topology, we use the network shown in Fig. 2. We
de®ne a total of 122 routes with o�ered loads
ranging from 0:1 to 2:0. Two routes are de®ned
between each pair of switches except for the
members of peer group 2 which have only one
local route between each pair. As before, each
accepted connection generates a revenue of 1:0.
The link capacities are varied between peer groups:
links in peer groups 1, 2, and 3 have capacities 25,
40, and 30, respectively, and the connecting links
have a capacity of 35 each. Despite the loss of
symmetry, the implied cost calculations are sur-
prisingly close.

Table 1 summarizes the main results of the four
experiments. Lmax is the maximum route blocking
probability; the high values for the middle two
experiments are for a local route in peer group
1 and a transit route from peer group 1 to 2,
respectively. The iterations column denotes the
range of iterations needed for convergence of
the three implied cost computations. Note that the
light load condition kdkM < 1 holds in every case.

Two comments on the above experiments are in
order. First, using our ®rst hierarchical approxi-
mation scheme, one can unfortunately construct

cases where the revenue sensitivities vary enough
along a route to cause an ordering between alter-
native routes from the source's point of view that
is di�erent from that obtained in a ¯at network.
This would cause the adaptive routing algorithm
to temporarily shift o�ered loads in the wrong
direction until the sensitivities became farther
apart. As a result, the routing algorithm would
adapt more slowly, but it is unclear whether this is
a common or troubling situation. Second, the
bound in Theorem 3 appears to be rather weak. It
was too high by an order of magnitude in the two
overload cases. In the fourth experiment, however,
it was less than twice the actual value.

We also performed experiments on the larger
network shown in Fig. 7 with a variable number of
de®ned groups. The group memberships in terms
of the links in each group are listed in Table 2. We
de®ne a total of 247 routes with o�ered loads
ranging from 0:2 to 3:0. As before, each accepted
connection generates a revenue of 1:0. The link
capacities vary from 20 to 30, and no attempt was
made to equalize the o�ered loads on the links.

Table 3 summarizes the main results of these
six experiments. In terms of relative implied cost
and revenue sensitivity errors, the six groups case
performed the best, and the six alternate groups
and nine groups performed the worst. For these
experiments (with ®xed routes and o�ered loads),
the error results seem to be correlated to the
number of transit routes per group with a lower
average number of transit routes tending to pro-
duce better results. We also compute the number

Fig. 7. A larger symmetric network.
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of messages per iteration under the assumption
that the groups of three switches in a triangle are
connected locally using a broadcast medium, i.e.,
only one message is required to reach the three
link controllers in the triangle. For a ¯at network,
807 messages per iteration are required, so each
group structure tested provides a signi®cant re-
duction. The most savings occurs with the six al-
ternate groups and the nine groups which, as
noted above, provide the worst performance in
terms of revenue sensitivity error.

6. On-line measurements

We now return to the subject of on-line mea-
surements, as brie¯y mentioned in Section 3. In-
stead of using the Erlang ®xed point
approximation, we show how estimates of the
carried loads and blocking probabilities can be
used to implement a hierarchical adaptive routing

scheme. Our discussion follows that of Kelly [22],
with additional optimizations to take advantage of
the hierarchical framework.

We say that two routes have the same hierar-
chical path from the point of view of link j if they
use the same set of links in peer group n�j� and
follow the same sequence of peer groups outside of
n�j�. Let Hn be the set of hierarchical paths from
the point of view of node n, and let Hjh be the
amount of bandwidth used explicitly by hierar-
chical path h 2Hn on link j. (Hjh is 0 for all links
j outside of n.) If we make the assumption that
wr1
� wr2

for two routes r1 and r2 with the same
hierarchical structure from the point of view of
link j 2 r1; r2, then sr1;j � sr2;j. Recalling that
qj�1ÿ Bj� �

P
r2R Ajrkr and dj � gjqj, we can re-

write (11) as

cj � dj

X
h2Hn�j�

Hjh
flow carried on path h

flow carried through link j

��sh;j� cj�; j2J: �22�

Table 2

Group memberships for the experiments on the larger network

3 Groups f0±11; 36g f12±23; 38g f24±35; 37g
6 Groups f0±11g f12±23g f24±35g f36g f37g f38g
6 Alternate groups f0±2; 9±10g f3±8; 11; 36g f12±14; 18±20; 22; 38g f15±17; 21; 23g

f24±29; 33; 37g f30±32; 34±35g
9 Groups f0±2; 9g f3±5; 11; 36g f6±8; 10g f12±14; 21g f15±17; 23g f18±20; 22; 38g

f24±26; 33; 37g f27±29; 35g f30±32; 34g
12 Groups f0±2; 9g f3±5; 11g f6±8; 10g f12±14; 21g f15±17; 23g f18±20; 22g

f24±26; 33g f27±29; 35g f30±32; 34g f36g f37g f38g
21 Groups f0±2g f3±5g f6±8g f9g f10g f11g f12±14g f15±17g f18±20g f21g f22g

f23g f24±26g f27±29g f30±32g f33g f34g f35g f36g f37g f38g

Table 3

Computational results for the larger network

Revenue sensitivity error:

E��� = k � k1
Implied cost error:

E��� = k � k1
Messages

per iteration

Average

transit routes

per group

Average local

routes per

group

�sÿ s0�=s �sÿ ~s�=s �cÿ c0�=c �cÿ ~c�=c

3 Groups 3.7%/63.9% 2.8%/120.1% 0.7%/2.9% 1.6%/5.9% 303 14.7 75.0

6 Groups 0.3%/12.2% 0.7%/16.2% 0.05%/0.3% 1.7%/3.9% 312 12.2 36.5

6 Alternate

groups

6.8%/159.1% 7.1%/163.1% 1.9%/4.5% 4.9%/8.3% 234 49.0 18.0

9 Groups 10.1%/136.8% 6.9%/98.4% 4.0%/9.6% 4.3%/9.1% 249 43.9 9.7

12 Groups 7.7%/48.6% 4.1%/46.7% 4.5%/8.9% 4.2%/7.7% 294 35.1 7.0

21 Groups 2.7%/13.5% 2.5%/13.5% 1.0%/2.9% 2.2%/8.2% 447 31.0 3.1
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Suppose we have on-line measures K̂h�t� and
Ĥj�t� of the carried ¯ows on path h and link j,
respectively, over the interval �t; t � 1�. Smoothed,
moving-average estimates k̂h�t� and ĥj�t� of the
mean carried ¯ows can be computed using the
iterations

k̂h�t � 1� � �1ÿ c�k̂h�t� � c K̂h�t�;
ĥj�t � 1� � �1ÿ c�ĥj�t� � cĤj�t�;

where c 2 �0; 1�. If we consider link j to be in
isolation with Poisson tra�c o�ered at rate qj, we
can estimate qj (and thus dj) by solving the equa-
tion ĥj � qj�1ÿ E�qj;Cj�� to obtain q̂j. Then we
would have d̂j � q̂j�E�q̂j;Cj ÿ 1� ÿ E�q̂j;Cj��.

Now suppose that the implied costs ĉ and the
associated surplus values ŝ have been computed
using these estimates and successive substitution.
Suppose also that the blocking probability Lh has
been estimated for each hierarchical path, possi-
bly using a moving-average estimate similar to
the above. The revenue sensitivity �1ÿ L̂h�ŝh;j tells
us the net expected revenue that a call on path h
will generate from the perspective of link j. Tra�c
from a source to a given destination peer group
should be split among the possible hierarchical
paths based on these revenue sensitivities. A
greater share of the tra�c should be o�ered to a
path that has a higher value of �1ÿ L̂h�ŝh;j than
the others. Also, if �1ÿ L̂h�ŝh;j is negative for a
particular path, that path should not be used
since a net loss in revenue would occur by ac-
cepting connections on that path. Any adjust-
ments of the splitting should be done gradually to
prevent sudden congestion. Note that we have
assumed that routes not satisfying the QoS con-
straints of a particular connection will be elimi-
nated prior to choosing a path based on the
revenue sensitivities.

7. Multiservice extensions

To accommodate di�erent types of services, our
model can be extended to a multirate loss network.
Now we allow Ajr 2 Z�. Several additional prob-
lems arise in this context. First and foremost, the
Erlang B formula no longer su�ces to compute the

blocking probability at a link for each type of call.
Let pj�n� denote the steady-state probability of n
circuits being in use at link j. Then the blocking
probability for route r at link j is Bjr �PCj

n�CjÿAjr�1 pj�n�. We can compute pj using a re-
cursive formula of complexity O�CjKj� where Kj

denotes the number of tra�c classes (distinct val-
ues of Ajr > 0) arriving at link j [44]. This result
was derived independently by Kaufman and
Roberts. To reduce complexity, many asymptotic
approximations have been proposed in the litera-
ture as the o�ered load and link capacity are scaled
in proportion [18,29,36,42,45,47]. We have found
the re®ned uniform asymptotic approximation
(RUAA) developed by Mitra et al. [36] to be
particularly accurate.

The Erlang ®xed point approximation can be
extended in a straightforward manner to the
multiservice case using an appropriate blocking
function at each link. Note that, in this case, the
®xed point is no longer guaranteed to be unique
[44]. 12 Based on this approximation, implied cost
equations can be derived [11,35], where we now
have a di�erent implied cost at each link for each
type of service. The straightforward extension to
our hierarchical setting is to further compute an
average implied cost for each type of service
passing through each peer group. Computing a
single average implied cost for each peer group is
attractive but would probably result in an unac-
ceptable loss in accuracy.

De®ne S to be the set of services o�ered by the
network and partition R into sets Rs; s 2S. Let
s�r� denote the service type associated with route
r. 13 Also, let qjr � kr=�1ÿ Bjr�, and de®ne gjrq �
Bjr�~qj;~Aj;Cj ÿ Ajq� ÿ Bjr�~qj;~Aj;Cj�, which is the
expected increase in blocking probability at link j
for route r given that Ajq circuits are removed from
link j. The multiservice implied costs satisfy the
following system of equations:

12 Using a certain single-link blocking function, convergence

to a unique ®xed point was recently proved in the light load

regime only [47].
13 Note that when multiple service types are carried between

two points, we assign various routes that may follow the same

path.

M. Montgomery, G. de Veciana / Computer Networks 34 (2000) 379±397 393



cjq �
X
r:j2r

gjrqqjr�sr;j � cjr�; j 2 J; q 2 R; �23�

where

sr;j � wr ÿ
X
k2r

Pkjckr ÿ
X

n 6�n�j�
Tnr�cns�r� �24�

and

�cns �
P

r2Rs Tnrkr�
P

j2r Ejncjr�P
r2Rs Tnrkr

: �25�

Note that cjr � cjq if Ajr � Ajq. In a large capacity
network, we can further reduce (23) to a system of
only 3J equations by employing the RUAA [36]. If
we rede®ne our norm on RJR (R is the total number
of routes) as

kxkM � max
j;r:j2r

X
k 6�j:k2r

Pkjjxkrj
(

�
X

n6�n�j�
Tnrjxjns�r�

)
;

�26�
let d � �d11; d12; . . . ; d1R; d21; . . . ; dJR� where djq �P

r:j2r gjrqqjr, and de®ne

D � max
n;r

Tnr

X
m6�n

Tmrjcm
r ÿ �cms�r�j

( )
where cm

r �
P

j2r Ejmcjr, then Theorems 1±3 can be
easily shown to hold for the multiservice case.

8. Conclusion

This paper is based on the premise that the use
of hierarchical source routing is a key to both re-
ducing complexity and providing acceptable QoS
in a large-scale network. Although aggregating
network elements into subnetworks is an old idea,
we have taken a unique approach to representing
the ``available'' capacity of a subnetwork by for-
mulating an implicit representation based on the
average implied cost to go through or into the
subnetwork. This average implied cost re¯ects
the congestion in the subnetwork and captures the
interdependencies among tra�c streams, a feature
sorely lacking in explicit representations of avail-
able capacity.

We proved that both a synchronous and asyn-
chronous distributed computation of the approx-
imate implied costs will converge to a unique
solution under a light load condition. Further-
more, we presented a more aggressive averaging
mechanism that also performs local averaging
among routes transiting through or into a local
subnetwork. We proved that with su�cient dam-
ping, a synchronous distributed computation of
these new approximate implied costs will converge
to a unique solution under any tra�c conditions.
Our experimental results showed that these ap-
proximations are reasonably accurate.

Based on this representation for available
subnetwork capacity, we proposed a hierarchical
source routing algorithm that adaptively selects
high-level routes so as to maximize network rev-
enue. Prior to path selection, routes not likely to
meet prespeci®ed QoS constraints, such as end-to-
end delay, are eliminated from consideration. Our
scheme can incorporate on-line measurements,
and it can be extended to a multiservice envi-
ronment. The low-level routing within subnet-
works was deliberately not speci®ed, as we feel
that some form of dynamic routing would be
bene®cial in coping with tra�c ¯uctuations at
that level.

Possible topics for future research directly re-
lated to our routing algorithm include the follow-
ing: extensions to more than two levels of
hierarchy, the optimal subnetwork size and switch
arrangement to achieve the best tradeo� between
accuracy and reduced overheads [28], the robust-
ness of the implied costs and routing to link fail-
ures, investigation of the need to reserve capacity
for local tra�c using trunk reservation, and the
role of our algorithm in a layered approach to IP
over ATM routing [10].
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Appendix A. Proof of Theorem 1

Choose x; x0 2 RJ . Then, 8j 2 J,

fj�x� ÿ fj�x0� � ÿgj�1ÿ Bj�ÿ1
X
r2R

Ajrkr

�
X
k 6�j

AkrPkj�xk

 
ÿ x0k� �

X
n 6�n�j�

Tnr��xn ÿ �x0n�
!
:

Therefore

jfj�x� ÿ fj�x0�j6 gj�1ÿ Bj�ÿ1
X
r2R

Ajrkr

�
X
k 6�j

AkrPkjjxk

 
ÿ x0kj �

X
n6�n�j�

Tnrj�xn ÿ �x0nj
!

6 gj�1ÿ Bj�ÿ1
X
r2R

Ajrkrkxÿ x0kM

� gjqjkxÿ x0kM :

Taking the norm on both sides, we have

kf �x� ÿ f �x0�kM 6 kdkMkxÿ x0kM :

So f ��� is a contraction mapping if kdkM < 1.
Using the de®nition of a contraction mapping and
the properties of norms, one can easily show that
the sequence f i�x�; i � 1; 2; . . ., converges to c0, the
unique solution of (11), for any x 2 RJ . �

Appendix B. Proof of Theorem 2

Rewrite (11) in matrix form as f �x� � Gx� b.
The goal is to show that G corresponds to a
weighted maximum norm contraction. For, in that
case, we can satisfy the conditions of the Asyn-
chronous Convergence Theorem in [5] (see Sec-
tions 6.2 and 6.3, pp. 431±435), which guarantees
asynchronous convergence to the unique ®xed
point c0. In the following, we use d as the weight
vector for the weighted maximum norm; in order
to do so, we require the condition d > 0. (We are
guaranteed that d P 0, but in all practical cases
d > 0 as we have assumed.)

Choose x; x0 2 RJ . Then, 8j 2 J,

jfj�x� ÿ fj�x0�j6 gj�1ÿ Bj�ÿ1
X
r2R

Ajrkr

�
X
k 6�j

AkrPkjjxk

 
ÿ x0kj �

X
n6�n�j�

Tnrj�xn ÿ �x0nj
!
:

Therefore

fj�x� ÿ fj�x0�
dj

���� ����6 gj�1ÿ Bj�ÿ1

dj

�
X
r2R

Ajrkr

X
k 6�j

AkrPkjdk
xk ÿ x0k

dk

���� ����
0BB@

�
X

n6�n�j�
Tnr

P
l2J Eln�

P
q2R TnqAlqkq�dl

xlÿx0l
dl

��� ���P
q2R Tnqkq

1CCA
6

gj�1ÿ Bj�ÿ1

dj

X
r2R

Ajrkr

X
k 6�j

AkrPkjdk

 

�
X

n6�n�j�
Tnr

P
l2J Eln�

P
q2R TnqAlqkq�dlP

q2R Tnqkq

!
kxÿ x0kd1

since the weighted maximum norm kxkd1 �
maxj2J jxj=djj. Taking the norm on both sides, we
have

kf �x� ÿ f �x0�kd16 kGkd1kxÿ x0kd1;
where the induced matrix norm kGkd1 �
maxj2J f 1

dj

P
k2J jgjkjdkg [5]. So G corresponds to a

weighted maximum norm contraction if
kGkd1 < 1. This follows from kdkM < 1 because

kGkd1�max
j2J

gj�1ÿBj�ÿ1

dj

X
r2R

Ajrkr

�
X
k 6�j

AkrPkjdk

 
�
X

n 6�n�j�
Tnr

P
l2JEln�

P
q2RTnqAlqkq�dlP

q2RTnqkq

!

6max
j2J

gj�1ÿBj�ÿ1

dj

X
r2R

AjrkrkdkM�kdkM

since qj � �1ÿ Bj�ÿ1P
r2R Ajrkr and dj � gjqj. �

Appendix C. Proof of Theorem 3

We have, 8j 2 J,

c0j ÿ cj � gj�1ÿ Bj�ÿ1
X
r2R

Ajrkr

�
X
k 6�j

AkrPkj�ck

 
ÿ c0k� �

X
n6�n�j�

Tnr�cn
r ÿ �c0n�

!
:

M. Montgomery, G. de Veciana / Computer Networks 34 (2000) 379±397 395



Hence

jc0jÿ cjj6gj�1ÿBj�ÿ1
X
r2R

Ajrkr

�
X
k 6�j

AkrPkjjck

 
ÿ c0kj �

X
n6�n�j�

Tnrjcn
r ÿ �cn� �cnÿ �c0nj

!
6gjqj�kc0 ÿ ckM �D�: �27�

Taking the M-norm on both sides and rearranging,
we have

kc0 ÿ ckM 6
DkdkM

1ÿ kdkM

: �28�

We also have, 8j; r such that j 2 r,

sr ÿ s0r;j �
X
k2J

AkrPkj�c0k ÿ ck� �
X

n6�n�j�
Tnr��c0n ÿ cn

r �:

Hence

jsrÿs0r;jj6
X
k2J

AkrPkjjc0kÿck j�
X

n 6�n�j�
Tnrj�c0nÿ�cn��cnÿcn

r j

6jc0jÿcjj�kc0 ÿckM�D �since Ajr�1�
6gjqj�kc0 ÿckM�D��kc0 ÿckM�D �using �27��
��dj�1��kc0 ÿckM�D�
6�dj�1� D

1ÿkdkM

�using �28��:

Taking the maximum norm on both sides, the
result follows. �
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